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I. Introduction: Envisioning the Bridge

The famous Russian mathematician Boris N. Delone once said, as Andrei N.
Kolmogorov recalls in his introduction to [1], that “a major scientific discovery
differs from a good Olympiad problem only by the fact that a solution of the
Olympiad problem requires 5 hours whereas obtaining a serious scientific result
requires 5,000 hours.”

My books (Bibliography, 3-8) are bricks in building a bridge from problems of
Mathematical Olympiads to problems of “real” mathematics. In them, I try to
show that problems of competitions and research problems of mathematics stem
from the same root, made of the same fabric, have no natural boundaries to
separate them.

It is, therefore, natural to give “real” problems to young high school Olympians
(maybe not at Mathematical Olympiads, as they do not last 5,000 hours :-). In fact,
when the mid 1960s, as a high school student, I attended the Award Presentation
Ceremony of the Moscow Mathematical Olympiad, the Chairman of the
Olympiad’s Jury and the famed mathematician Andrej Nikolaevich Kolmogorov
paid us, young Olympians, an elegant compliment. “Perhaps, the only way to
receive a proof of Fermat’s’ Last Theorem is to offer it at the Moscow
Mathematical Olympiad,” he said.

We ought to stop discrimination of young high school mathematicians based on
their tender age. However, we can offer true research problem only to a small
percent of high school mathematicians. What can we do for others, who are not
yet ready for research? Here is one way. While reading or creating research
mathematics, I caught myself many times thinking how beautiful, Olympiad-like
certain ideas were. Consequently, some of these striking ideas gave birth to
problems I created for the Olympiads. I first notice a fragment of the research,
which utilizes a nice, better yet surprising idea. I then translate thus found
mathematical gem into the language of secondary mathematics, and try to present
it in a form of an engaging story – and a new Olympiad problem is ready!
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Sometimes I imitate a “real” mathematical train of thought by offering at a
Mathematical Olympiad a series of problems, increasing in difficulty, and leading
to generalizations and deeper results. It is also important to realize that “real”
mathematics cannot be reduced to just analytical reasoning, for to the tune of 50%
mathematics is about construction of counterexamples. I try to reflect this
dichotomy in our Olympiad problems, many of which require not only analytical
proofs but also construction of examples.

The Bridge we are building can be walked in the opposite direction as well: it is
worthwhile for professionals to take a deeper look at problems of Mathematical
Olympiads. Those problems just might inspire exciting generalizations and new
directions for mathematical research.

I will illustrate these ideas here in the context of a problem I have recently created
for the Colorado Mathematical Olympiad.

II. An Olympiad Problem

My 1996 sabbatical leave I spent in several European countries, a good part of it
at Charles University in the old part of Prague. While there, I attended a research
number-theoretic talk by a young talented professor Martin Klazar on integral
sequences. I enjoyed the talk, and took notes. When in early 2005 I came across
these notes for the first time since taking them, I found a note to myself on the
margin (yes, the margin again!): “use these ideas at the Olympiad!” Indeed, I put
Martin’s research ideas into the foundation of the part (b) of hardest problem 5 of
the 22nd Colorado Mathematical Olympiad. Below you can see the logo of CMO-
22.

Twenty-Second 22

Colorado Mathematical Olympiad
April 22, 2005

Logo of the 22nd Colorado Mathematical Olympiad, April, 2005

Let us look at this problem and its solution.

2005.5. Love and Death
(a) The DNA of bacterium bacillus anthracis (causing anthrax) is a sequence, each term
of which is one of 2005 genes. How long can the DNA be if no consecutive terms may
be the same gene, and no two distinct genes can reappear in the same order? That is, if



3

distinct genes ,  occur in that order (with or without any number of genes in

between), the order , …,  cannot occur again.

(b) The DNA of bacterium bacillus amoris (causing love) is a sequence, each term of
which is one of 2005 genes. No three consecutive terms may include the same gene
twice, and no three distinct genes can reappear in the same order. That is, if distinct
genes ,  , and  occur in that order (with or without any number of genes in

between), the order  , …,  , …, cannot occur again. Prove that this DNA is at most

12,032 long.

First Solution. Let us prove that in a DNA satisfying the two given conditions,
there is a gene that occurs only once. Indeed, let us assume that each gene appears
at least twice and for each gene select the first two appearances from the left and
call them a pair. The first gene from the left is in the first pair. This pair must be
separated, thus the pair of the second gene from the left is nestled inside the first
pair. The second pair must be separated, and thus the pair of the third gene from
the left must be nestled inside the second pair, etc. As there are finitely many
genes, we end up with a pair of genes (nestled inside other pairs) that is not
separated, a contradiction.

We will now prove by mathematical induction on the number n of genes that the
DNA that satisfies the conditions and uses n genes is 2n – 1 gene long. For n = 1
the statement is true, as longest DNA is 2 – 1 = 1 gene long.

Assume that a DNA that satisfies conditions and uses n genes is at most 2n – 1
gene long. Now let S be a DNA sequence satisfying conditions that uses n + 1
genes; we need to prove that it is 2(n + 1) – 1 = 2n + 1 gene long.

By the starting paragraph, there a gene g that occurs only once in S; we throw it
away. The only violation that this throwing may create is that two copies of
another gene are now adjacent – if so, we throw one of them away too. We get the
sequence S’ that uses only n genes. By inductive assumption, S’ is at most 2n – 1
gene long. But S is at most 2 genes longer than S’, i.e., S is at most 2n + 1 gene
long. The induction is complete.

All that is left is to demonstrate that the DNA length of 2n – 1 is attainable. But
this is easy: just take a sequence 1, 2, …, n – 1, n, n – 1, …, 2, 1. ■

Second Solution. We will now prove by mathematical induction on the number n
of genes that the DNA that satisfies the conditions and uses n genes is 2n – 1 gene
long. For n = 1 the statement is true, as longest DNA is 2 – 1 = 1 gene long.

Assume that for any positive integer k, k n , a DNA that satisfies the conditions
and uses k genes, is at most 2k – 1 gene long. Now let S be the longest DNA
sequence that satisfies conditions and uses n genes; we need to prove that S is at
most 2n – 1 gene long.
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Let the first gene of S be 1, then the last term must be 1 as well, for otherwise we
can make S longer by adding a 1 at the end. Indeed, assume that the added 1 has
created a forbidden DNA. This means that we now have a subsequence a,…,1, …,
a, …, 1 (with the added 1 at the end); but then the original DNA has already had
the forbidden subsequence 1, …, a,…,1, …, a.

Case 1. If there are no more 1’s in the DNA, we throw away the first 1 and the last
1, and we get a sequence S’ that uses n – 1 genes (no more 1s). By inductive
assumption, S’ is at most 2n – 1 genes long. But S is 2 genes longer than S’, i.e., S
is at most 2n – 1 genes long.

Case 2. Assume now that there is a 1 between the first 1 and the last 1. The DNA
then looks as follows: 1, S’, 1, S”, 1. Observe: if a gene m appears in the sequence
S’, it may not appear in the sequence S”, for this would create the prohibited
subsequence 1, …, m, …, 1, …, m. Let the sequence 1, S’, 1 use n’ genes and the
sequence 1, S”, 1 use n” genes. Obviously, n’ + n” – 1 = n (we subtract 1 in the
left side because we counted the gene 1 in each of two subsequences!). By
inductive assumption, the length of the sequences 1, S’, 1 and 1, S”, 1 are at most
2n’ – 1 and 2n” – 1 respectively. Therefore, the length of S is (2n’ – 1) + (2n” –
1) – 1 (we subtract 1 because the gene 1 between S’ and S” has been counted
twice). But (2n’ – 1) + (2n” – 1) – 1 = 2(n’ + n”) – 3 = 2(n + 1) – 3 = 2n – 1 as
desired. The induction is complete.

This proof allows us to find richer set of examples of DNAs of length of 2n – 1
(and even describe all such examples if necessary). For example:

1, 2, …, k, k + 1, k, k + 2, k, …, k, 2005, k, k – 1, k – 2, …, 2, 1. ■

Solution of problem 5(b). Assume S is the longest DNA string satisfying the
conditions. Partition S into blocks of 3 terms starting from the left (the last block
may be incomplete and have fewer than 3 terms, of course). We will call a block
extreme if a number from the given set of genes {1, 2, …, 2005} appears in the
block for the first or the last time. There are at most 2 2005 extreme blocks.

We claim that there cannot be any complete (i.e., 3-gene) non-extreme blocks.

Indeed, assume the block B, which consists of genes  ,  , in some order, is not

extreme. This means that the genes  ,  , each appears at least once before and

once after appearing in B. We will prove that then the DNA would contain the
forbidden subsequence of the type  ,  ,  ,  , . Let A denote the ordered

triple of the first appearances of  ,  , (these 3 genes may very well come from

distinct 3-blocks). Without loss in generality we can assume that in A the genes
 ,  , appear in this order. Let C denote the ordered triple of the last
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appearances of  ,  , in some order. Let us look at the 9-term subsequence ABC

and consider three cases, depending upon where  appears in the block B.

1. if  is the first gene in B (Fig. 5.1), then we can choose  also in B and

 in C to form  ,  , which with  ,  , from A gives us the

forbidden  ,  ,  ,  , .

Fig. 5.1

2. let  be the second gene in B (Fig. 5.2). If  follows  then with a 

from C we get  ,  , , which with  ,  , from A produces the

forbidden  ,  ,  ,  , . Thus,  must precede  in B. If the order of

the genes  , in C is  , , then we can combine an  from B with this

 , to form  ,  , , which with  ,  , from A gives us the forbidden

 ,  ,  ,  , . Thus, the order in C must be  ,  . We can now

choose , from A followed by , from B, followed by  ,  from C

to get  , ,   , ,  , which is forbidden.

Fig. 5.2

3. let  be the third gene in B (Fig. 5.3), and is thus preceded by a  in B. If

the order in C is  , , then we get  ,  , from A followed by  from B

and  , from C to get the forbidden  ,  ,  ,  , . Thus, the order in

C must be  ,  , and we choose  , from A, followed by  , from B,

and followed by  ,  from C to form the forbidden  , ,  , , ,  .

  

A

  

B

  

C

 

  

A






B

  

C

 

  
A

  
B

  
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  
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Fig. 5.3

We are done, for the DNA sequence consists of at most 2 2005 extreme 3-
blocks plus perhaps an incomplete block of at most 2 genes – or 12,032 genes at
the most. ■

III. Crossing the Bridge into Research

In problem 5(a) we obtained the exact result, the maximum length of the DNA of

bacterium bacillus anthracis. One cannot do better. The problem 5(b), however,
produced only an upper bound for the length of the DNA of bacterium bacillus
amoris. Can we obtain the exact result? Can we at least reduce the upper bound?

“Yes we can!” as the most inspiring USA Presidential candidate in a generation,
Barak Obama says. Let us allow the 3-gene blocks to overlap by their end terms.
We can then use the same argument as in the solution of 5(b) above, and reduce
the upper bound from 6n +2 (n is here number of available genes) to 4n + 2. This
is exactly what Martin Klazar of Charles University, Prague, presented in his 1996
talk.

Can we do better? Yes, with clever observation of the starting and ending triples
Klazar was able to reduce the upper bound to 4n – 4. In his 1996 talk, Martin even
claimed the bound of 4n – 7, proof of which required further cleverness. However,
the problem of finding the exact maximum length of DNA remains open.

Open Problem. The DNA of bacterium bacillus amoris (causing love) is a sequence,
each term of which is one of n genes. No three consecutive terms may include the same
gene twice, and no three distinct genes can reappear in the same order. That is, if distinct
genes ,  , and  occur in that order (with or without any number of genes in

between), the order  , …,  , …, cannot occur again. Find the maximum length the

DNA of bacterium bacillus amoris may have.

Warnings.
1) While bacterium bacillus anthracis (causing anthrax) does exist, I claim no

knowledge of its structure. It has been simply used to captivate the imagination
of the Olympians.

2) The existence of bacterium bacillus amoris (causing love) has not been
established by science.
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