ࡱ> q` !UbjbjqPqP *D::!MJJJJJJJ^^NMMMMMMM$OhQDMJ)a^))MJJcM - - -)JJM -)M - -nEJJJXM ]*bK xM M0NL@7S,7S@XM7SJXM E! -#%MM, N))))^^^d^^^^^^JJJJJJ Problems and Challenges of Catering for the Range of Mathematics Abilities in Australian Primary Classrooms Ann Gervasoni Australian Catholic University Australia This paper explores the issues and challenges of catering for the range of mathematical abilities in Australian Primary Classrooms. Of particular focus is how Australian teachers determine childrens current mathematical knowledge using clinical interviews and an associated framework of growth points, and the opportunity this provides for how teachers use this data to customise learning experiences to cater for childrens individual needs. Particular issues related to learning and reaching number knowledge are also identified. The Australian Context Throughout the past decade school systems throughout Australia have focused on improving mathematics learning for all students. This emphasis on improving learning has been driven in Australia by the 1997 national literacy and numeracy goal that asserts that every child leaving primary school should be numerate and able to read, write and spell at an appropriate level (Department of Education, Science and Training, 2001, p. 1). However, it is the sub-goal that every child commencing school from 1998 will achieve a minimum acceptable literacy and numeracy standard within four years (Department of Education Science and Training, 2001, p. 1) that focused the attention of school systems in Australia on literacy and numeracy learning in the early years of schooling. This prompted several large research projects (e.g., Gould, 2000; and Clarke, Cheeseman, Gervasoni, Gronn, Horne, McDonough, Montgomery, Roche, Sullivan, Clarke, & Rowley, 2003) that identified strategies for improving mathematics learning and teaching (Bobis, Clarke, Clarke, Thomas, Wright, Young-Loveridge & Gould, 2005). A common feature of these research projects was the use of clinical interviews so that teachers could identify the current knowledge of each student and plan and customise learning opportunities accordingly. The Early Numeracy Interview and Framework of Growth Points The Early Years Interview (Department of Education Employment and Training, 2001), developed as part of the Early Numeracy Research Project (ENRP, Clarke et al., 2002), is one example of a clinical interview and a research-based framework of growth points that describe key stages in the learning of various aspects of mathematics. This assessment interview and the associated growth points is used in Victorian schools and was used to gather data explored in this paper. The growth points formed a framework for describing childrens development in Counting, Place value, Addition and Subtraction, Multiplication and Division, Length, Mass and Time, Properties of Shape, and Visualisation and Orientation. The processes for validating the growth points, the interview items and the comparative achievement of students in project and reference schools are described in full in Clarke et al. (2002). To illustrate the nature of the growth points, the following are the points for Addition and Subtraction. These emphasise the strategies children use to solve problems. Counts all to find the total of two collections. Counts on from one number to find the total of two collections. Given subtraction situations, chooses appropriately from strategies including count back, count down to & count up from. Uses basic strategies for solving addition and subtraction problems (doubles, commutativity, adding 10, tens facts, other known facts). Uses derived strategies for solving addition and subtraction problems (near doubles, adding 9, build to next ten, fact families, intuitive strategies). Extending and applying. Given a range of tasks (including multi-digit numbers), can use basic, derived and intuitive strategies as appropriate. Each growth point represents substantial expansion in knowledge, or key stepping stones along paths to mathematical understanding (Clarke, 2001). It is not claimed that every student passes all growth points along the way, nor should the growth points be regarded as discrete. However, the order of the growth points provides a guide to the possible trajectory (Cobb & McClain, 1999) of childrens learning. In a similar way to that described by Owens and Gould (1999) in the Count Me In Too project: the order is more or less the order in which strategies are likely to emerge and be used by children (p. 4). In summary, the framework of growth points can help teachers to understand a possible trajectory for describing childrens learning; identify where any child is currently positioned; identify any children who may be vulnerable in a given domain; identify the zone of proximal development for each child in each domain so as to customise planning and instruction; and identify the diversity of mathematical knowledge in a class. The interview takes between 30-40 minutes per student and is conducted by the regular classroom teacher. The full text involves around 60 tasks, although no child is presented with all of these. Given success with a task, the interviewer continues with the next tasks in the given mathematical domain (e.g., Place Value ) for as long as the child is successful. The Early Numeracy Interview provided teachers participating in the ENRP with insights about childrens mathematical knowledge that they reported might otherwise not have been forthcoming (Clarke, 2001). Further, the project found that teachers were able to use this information to plan instruction that would provide students with the best possible opportunities to extend their mathematical understanding. Insights About Childrens Number Knowledge Assessment data obtained from the Early Numeracy Interview in 2006 for over 7000 children from 52 Primary Schools in western Victoria was aggregated and analysed. This enabled a rich picture of these childrens number knowledge to be formed. The practice in this region of Victoria is for teachers to assess each student in the first week of school using the Early Years Interview for the purpose of gaining insight about each childs current mathematical knowledge. Childrens responses to assessment items were analysed by the teacher to determine the growth points children reached. To increase the validity and reliability of the data, each teacher followed a detailed interview script, recorded childrens answers and strategies on a detailed record sheet, and used clearly defined rules for assigning growth points. Childrens growth points were entered into an excel spreadsheet and each schools data was aggregated to form the data set reported on here. The regions Numeracy Advisors and each schools Numeracy Co-ordinator managed this process. Issues Arising From Examining Childrens Number Knowledge Examination of data collected in 2006 identified identify some important issues related to learning, teaching and curriculum that need to be addressed to improve learning opportunities for children. This paper will focus on issues related to the Place Value, Addition and Subtraction, and Multiplication and Division domains. The percentage of children in each grade reaching each Place Value growth point (GP) is shown in Figure 1. Of particular interest is childrens knowledge of multi-digit numbers.  Figure 1. Percentage of children in each grade reaching each growth point at the beginning of 2006 (N=7651). An issue highlighted in Figure 1 is the spread of growth points at each level. This finding has been noted elsewhere (e.g. Gervasoni & Sullivan, 2007; Bobis et al., 2005) but highlights the complexity of the teaching process and the importance of teachers identifying each childs current knowledge and knowing ways to customise learning opportunities that meet each childs needs. This has important curriculum and instruction implications for any plan to strategically improve learning outcomes for students. Another interesting point is that almost half the children beginning Prep, the first year of school in Victoria, can already read, write, order and interpret one-digit numbers. These children already need opportunities to explore two and three digit numbers, an issue that needs to be addressed in curriculum development and planning. The remaining students require the more traditional Prep experiences that firstly emphasise exploring and constructing knowledge about one-digit numbers. However, right from the beginning of schooling, the data highlights differences in childrens knowledge to which the community needs to respond to optimise learning. It is also important to acknowledge that some teachers may not have been able to identify the extent of some childrens knowledge because this is sometimes culturally specific, and may not be obvious to the teacher (Gervasoni, 2003). This issue may be another focus for professional development. Figure 1 also shows that nearly half the Grade 2s and three-quarters of the Grade 3s were already able to interpret 3-digit numbers and needed opportunities to explore and construct understandings about 4-digit numbers and greater. School communities need to consider how this can be best achieved. Another feature of the data is the number of students in Grade 4-6 within the Diocese who have not yet reached GP 4 and GP 5 (52%, 32%, and 18% respectively). Further examination of these students assessment responses show that many were able to read and write four-digit numbers, but were not able to either order 4-digit numbers and/or answer the questions, What is 10 more than 2791? and What is 100 less than 3027? As highlighted by Baroody (2004), these tasks require children to appreciate the quantity associated with number names and numerals and either to use their mental number line (Griffin & Case, 1997) to find 10 more or 100 less, or to use a reasoning based strategy that draws upon their number sense. Difficulty with this type of task typifies the children who experience difficulty in Place Value. Certainly, a curriculum emphasis on understanding these numbers as quantities and numbers with positions on the number line is important. A further implication of this finding is that some children in Grades 4-6 may be required to solve problems requiring calculations with four-digit numbers and greater (a prominent feature of the curriculum at this level), without an understanding of these numbers as quantities and their position on the number line. It seems fair to assume that many of these children may be reliant on learning procedures for performing calculations without constructing the conceptual underpinnings, and perhaps before they have developed reasoning based strategies for calculating. To explore this conjecture, we first examined the highest growth point reached by students in the Addition and Subtraction Strategies domain (see Figure 2).  Figure 2. Percentage of children in each grade reaching each growth point at the beginning of 2006 in addition and subtraction (N=7651). The data show that 51% of children beginning Grades 4 and 30% of children beginning Grade 5 were not yet using derived strategies (GP 5). This is consistent with the findings of a longitudinal study of 323 children who participated in the ENRP (Clarke et al., 2006). Their study found that when children reached Grade 4 and 5, respectively 53% and 37% had not reached GP 5. However, note that in the longitudinal study, data refer to assessment at the end of Grades 3 and 4, so comparisons are indicative only. Figure 2 also highlights that 16% of Grade 6s were not yet using derived strategies. This suggests that these children may rely on rote procedures for performing calculations. To explore this issue further, we determined the number of Grade 6 students who had not yet reached GP 4 in Place Value, nor used reasoning-based strategies in Addition and Subtraction (GP 5) and Multiplication and Division (GP 4). Figure 3 shows the number of children who had not reached these growth points and the combinations of domains for which this was the case (N=1195, n=371). It is important to note that 69% of children beginning Grade 6 had meet these minimum targets. Conversely, 31% were vulnerable in at least one of these domains, and these children are the focus of Figure 3. In summary, Figure 3 shows that of the 31% of Grade 6s who were vulnerable in at least one of these domains, 18% were vulnerable in all three domains, and nearly half (45%) were vulnerable in at least 2 domains. Figure 3. The number and combinations of domains for which Grade 6 children had not yet reached targets in Place value, addition and subtraction, and multiplication and division, (N=1195, n=371). In relation to the question about whether children who had not yet reached GP 4 in Place Value used reasoning-based strategies in Addition and Subtraction and Multiplication and Division contexts, Figure 3 shows that of the 211 Grade 6 children who had not yet reached GP 4 in Place Value, 61% had also not yet reached the growth points associated with using derived strategies in Addition and Subtraction and reasoning strategies in Multiplication contexts. A focus for increasing the capacity of communities to provide effective learning opportunities for these students will include professional learning opportunities that enable Grades 4-6 teachers to identify and develop instructional approaches to identify and assist these students. This may also include intervention-style programs aimed at accelerating childrens number learning in these aspects. Issues of National and International Significance The data examined in the previous section highlight the spread of number knowledge within each grade level, and show that there are groups of Australian students who may be at risk of poor learning outcomes in mathematics. Importantly, knowledge of each childs growth points enable teachers to customise learning experiences for students based on their learning needs. Analyses of these data also highlight some more general learning issues. For example, notable numbers of students beginning Grade 6 (11 year-olds) were not yet able to read, write, order and interpret four-digit numbers nor use reasoning-based strategies for calculations in Addition and Subtraction, and Multiplication and Division. Such findings are of concern and need to inform policy development, professional learning activities and curriculum development. Overall, these data highlight several important themes and issues of national and international interest: the range of abilities and number knowledge across the primary school; the challenge for teachers in meeting the needs of all students in light of the range of abilities; issues in mathematics learning that need to be addressed at different points of the primary school years; and the particular learning needs of higher and lower achieving students. The challenge remains for Australian teachers and researchers to draw on local and international experiences that offer insight about how to improve the capacity of communities to provide more effective learning opportunities for all. References Baroody, A. (2004). The developmental bases for early childhood number and operations standards. In D. H. Clements & J. Sarama (Eds.), Engaging young children in mathematics: Standards for early childhood mathematics education. (pp. 173-219). New Jersey: Lawrence Erlbaum Associates. Bobis, J., Clarke, B., Clarke, D., Thomas, G., Wright, R., Young-Loveridge, J. & Gould, P. (2005). Supporting Teachers in the Development of Young Childrens Mathematical Thinking: Three Large Scale Cases. Mathematics Education Research Journal. 16(3), 2757. Boulton-Lewis, G. (1996). Representations of place value knowledge and implications for teaching addition and subtraction. In J. Mulligan & M. Mitchelmore (Eds.), Children's number learning: A research monograph of MERGA/AAMT (pp. 75-88). Adelaide: Australian Association of Mathematics Teachers. Clarke, B., Clarke, D., & Horne, M. (2006). A longitudinal study of mental computation strategies. In Novotn, J., Moraov, H., Krtk, M, & Stehlkov, N. (Eds). Proceedings of the 30th Conference of the International Group for Psychology of Mathematics Education, Vol. 2, pp. 329-336. Prague: PME. Clarke, D. (2001). Understanding, assessing and developing young children's mathematical thinking: Research as powerful tool for professional growth. In J. Bobis, B. Perry & M. Mitchelmore (Eds.), Numeracy and beyond: Proceedings of the 24th Annual Conference of the Mathematics Education Research Group of Australasia (Vol. 1, pp. 9-26). Sydney: MERGA. Clarke, D., Cheeseman, J., Gervasoni, A., Gronn, D., Horne, M., McDonough, A., Montgomery, P., Roche, A., Sullivan, P., Clarke, B., & Rowley, G. (2002). ENRP Final Report. Melbourne: ACU. Cobb, P., & McClain, K. (1999). Supporting teachers learning in social and institutional context. In Fou-Lai Lin (Ed.), Proceedings of the 1999 International Conference on Mathematics Teacher Education (pp.1828). Taipei: National Taiwan Normal University. Department of Education Science and Training. (2001). National Goals. Retrieved 5 Aug, 2003, from http://www.dest.gov.au/literacy&numeracy/goals_plan.htm Department of Education Training and Youth Affairs. (2000). Numeracy, a priority for all: Challenges for Australian schools. Canberra: Commonwealth of Australia. Fuson, K. (1992). Research on whole number addition and subtraction. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 243-275). New York: Macmillan. Gervasoni, A. & Sullivan, P. (2007). In Press. Assessing and teaching children who have difficulty learning arithmetic. Educational and Child Psychology. 24(2). Gervasoni, A. (2003). Identifying and assisting children who are impeded in learning mathematics. Australian primary mathematics classroom. 8(4), 4-9. Gould, P. (2000). Count Me In Too: Creating a choir in the swamp. In Improving numerary learning: What does the research tell us? (Proceedings of the ACER Research Conference 2000, pp. 2326). Melbourne: Australian Council for Educational Research. Griffin, S., & Case, R. (1997). Re-thinking the primary school math curriculum: An approach based on cognitive science. Issues in Education, 3(1), 1-49. Griffin, S., Case, R., & Siegler, R. (1994). Rightstart: Providing the central conceptual prerequisites for first formal learning of arithmetic to students at risk for school failure. In K. McGilly (Ed.), Classroom lessons: Cognitive theory and classroom practice (pp. 25-49.). Cambridge, MA: MIT Press/Bradford. Mulligan, J. (1998). A research-based framework for assessing early multiplication and division. In C. Kanes, M. Goos & E. Warren (Eds.), Teaching mathematics in new times: Proceedings of the 21st annual conference of the Mathematics Education Research Group of Australasia (Vol. 2, pp. 404-411). Brisbane: MERGA. Mulligan, J., & Mitchelmore, M. (1996). Children's representations of multiplication and division word problems. In J. Mulligan & M. Mitchelmore (Eds.), Children's number learning: A research monograph of MERGA/AAMT (pp. 163-184). Adelaide: Australian Association of Mathematics Teachers. Owens, K., & Gould, P. (1999). Framework for elementary school space mathematics. Unpublished Discussion Paper. Steffe, L., Cobb, P., & von Glasersfeld, E. (1988). Construction of arithmetical meanings and strategies. New York: Springer-Verlag. Steffe, L., von Glasersfeld, E., Richards, J., & Cobb, P. (1983). Children's counting types: Philosophy, theory, and application. New York: Praeger. Wright, R., Martland, J., & Stafford, A. (2000). Early Numeracy: Assessment for teaching and intervention. London: Paul Chapman Publishing. m )-Br3UmT""$$$$$--m2n2o2y2266$7%788999<!=C"CCD E2EE#FGG[HHII.JJJJKKOLLſſ h%z6 h%zCJ]jh%zCJU h%z6] h%zCJ&jh%zCJUmHnHsH tH uh%z6CJ] h%zCJ h%zCJh%z0J(CJh%z h%zCJ@m{ )U?_Vn3 T""# & Fx/ & F)'! !U#$$$&*+/m2o225689<!=>c@C"C>DBEkFGHIJ1'$x%`JQKKLNMMNwOPQ S{STT!U1L%MEMMMMM*NNVOlODP~P:QQRRSSBTTTT!U h%z6] h%z6h%z,1h/ =!n"n#n$n% `!nN{*gavN}TxtG.5ggf9GAD"hIs$cr499sQsst}k]]UUVtxUtI홣{IPZė_lޭ}翿wK4~Dgv.iyu^wU+Io3`UjOd_ѧo٘p*lNkV:([|`;E'xt2;H62n&3­oVsGf# ժ>y[t<{3WN~qi"v8#gmϢJfsJH4>r=MNNY%Cwt@%*Wy*L*I)*T^<[f)2 w2%#rX+gi#&2LD*gY17?!'չSs?VGXQVm4?5-tH3o`fQ1ߍ1W4f4g '1,hjJfSkz|2=XG{׿=_1x_%cw"g,FX*OA`uxN{쬸.+-q'+"q̞ɍS"q—S\|&Oɦ0 ELx \ZFjii$30 ]vȜ |,JP"OEΉ4 mQT4c|UGeKEC5 0dde92:R2Fj!FF*3rɦFda̋C_둲,`42hLeԐij@u-3ud6 ˨겢QB0༂O1rC5l"FZS29bH}IR@ɔFE+ܒR!fgƇLrr;!*_"cG1l,lpYH߉V "ϐĨ]!k,x?h(Md]0Zh6:0-%[(/C2ɪh;\3/t,o|fF}WK6FZU`3dOgԔr}3!@Ϙ+{ Rr%kd_c=F<;es7 sOw+&GJr*<qN4z0"6:1FG9 υޗG\`*k_90qٟߌ3rqZN6NadnG[$cY W9*0 kV16}a0vX" 0fm1`Cu: J`ˠ[e[ǹ~:֧-_ncΖ/xqG.b%hqJ4!ϭ8k3l76!ލ袍oߌ]`tǰv6'ψkw`2u(&Up3D8 =%7HeyF3wdX:K)=3n.&1t:aht$oP٧:5wT#<QͷxV^PAa΄9csxjC?DW&F 1<@ 6"; _| Ό+aXzƈWHLJ TL8%23S23+%5sg#9y$d&#LN`a,d(yYe~p\@ 0>(ry2O2w˲|5 H=2L;Ռ{M 2(hLf^*iU4Puƍ0j}}3Y6e8ƅ͒\fan棬fNbfB) VLσ?@=3J6B63Ӥ֦K? dLMP_%-k&RQ#B|ATV@hOP#FeGffdn69#5M+!c%X_ e_i`CQf=f~CS@S9-W%2[L-5P?[p|Yƚ0s 3ff]F@ZĒ&o\Y 4e[o GĈO\I(0 yUmfz{ffY=EFw̎XF^}0G fO:Cfw:n1?kvَnձ?(qqls$p=kC¼#m7;n+™C;@?6bKZJm0&co. ݐU΃jxN7xN_s[1ahy\\+{cff/t@({md쳙}23 fVvW0yC3/{bvbՇr Ca cHle),5j~VuתzZYȟjG2kkE֖`U`V*G^eZ:c- E--b%,YZK`+A[XlIBZ뙾zocru~`;bmlAľ!y}z4l 2CfeCl D%Zyll XFZ/QS},`=,[J+[eBeˬl-|ĕj?+ ?Z[AwpAkYgu8a~8e]ς`eea+ BWk 0y*.Y% 3GJQ072ciLx<>KCX%7p8'gDHq*BE=-czJ~DOQŜI]ނL2Ž,xBf$L,>OlK\؃Ts b`~hˤx"yVcUx^Vbxv,2*L} p5X+>|XK|>|Q4C?®co{|Nc?``mvK/zO~S7@4 NDe7;}ҧ)8o<9  ;;;2FJzxl~>Y 赋x/.# ?Ef.7@va~Hl7]xbwl'6` 6l=/q+]dWY1ɲ?Os2O)byI(^yAkyk_ ~ /qI|S@qWN⪮etW\A&z~kz >p,fokZC,[ElwH<;z q]D!zzvL  8)K/R,"=)2|" +"@*tH.lĬHĪ1<2/+Ұ2-s! P{r.^K|F,|^OR,dEOzo/` #6}a7vOl%^Á!菮Xn"-" FF `rƠwGl(/=.ra_v z@(pf* v`-j+8(X?Q Ɖp6IfSqt9$b|ĵ@HHXp.\,n RxjtZTib"e"J_Af ir%w:i 8c3a(t8'@7gL>#\TU|sij;"jc2ێ @Y2z*:2J@w`slW ;;Ql?QLe E0] ߰U;%#'FGXȤ1n^SSz#~, ˁȪdovM{®7;-"`h0Pߚ=.s1Sfg\fcPy|%[k0},~D_,dTZX+zpkخ.As}ǕB`Ĉ_K f0Q`9p_e VZceVUv`5d[VS6ee]VKVae9VIded8laO8)Kr,2l?acIW?K*;c,2쬲ˍs˲PB *Ț[UXl"+*{aO?K`ـL@h_qe!c觱7Ze\u'uXO~r-"װaX)r-ǰr/GbAr&ʞ}d5MC1&9lE8,g]!;r!k'6rZ>l KG҉]K'6jwQ.`Y3DgI_X=9jc\ȩde`$8 AjðV~jv/=)h(f*F4P#J2R^#=%2a(BI҈FyhDR6 Q(QU)ckd!ae'|fYDX:R ty#82>|^fZoeLl#0.>B |<6>ʬg% p;Yx%K#Rb)bܔ7qKf3,g4 !=a7RD$ζ >I ,_@z,p1KD/XJzBKKטּND04́Nipc6 4~,nN93Dc&M1fm75ͨL%9Aoє-ю>у7q,_gc^C.Sys3Q|s5%0W+e/K5E|Jg.W@J05R0߃2R=s1wS-s0wR5*W6R%s?pxGmU;47O'1R[2QkZ_2OQy:innbV*jnF*h'_ SPfU Y @ ( >SRhqe-5AVk=ܓSQ@t 7HBTK+je2)h Z%U-hW%HU*¬2*bR\z+JgeR VBgl5U |>_8*-o^+ܪU{bV *"*ԀVU6a{X'Q,/$lLUa|pWˇY_.939L ! D oFlb@)nNPTP6aؿ,lI͆aj ؝ `t'Xj7Lyg4"Uo?`CwH$xFg >Bz DE\+.i]TT*ϔOT{Tar]sJp*s<* H^DUEUe^LU΋K@^^B ¾ /q𛓛*+A )XJ]>a_rz)1eJe6ٰU t)牕CG\O``rx>.Z`<BQ} j4ߦy!B%|`{1ZƒUd5%j]x2($+C>z \ᚺ_D{ߠpCt |Iʹɷ= ~ 8@6Z7F~ ߄>N>zȏ=~ng :9Z?z^z ޣw?(u@xKđE{ {_k _IH#K#]l` L24"1b,%)V,bJT^*bUGS,nAa€l?.%pyO*P*qҋ8` T(=}*+nS9q,{)\lBbF o&] )ĩ`"W#r#i1b- FP U?R5ͩhJE3]WіCt0 㜟QgNW1XJZ,8!~(8F] ;Qc vN;h0TE# Qb#M+ϡ17FCf{]Tj[RLb2t?`rKE׉[5_U 2*QL+O4/3[{c?0o«VX}F%oO?ygZb>@LӗEY^CF=db6K-;2FY:ZJ%֘ɘ@ՍJ t\g#L*[|J{x_V&i^375.^CB<]P{c(JUt(-˝%r!ʬ @˄JD( ;^ 4W 41?oEVam*V(xo@GGryF1:"m|lr1U(ERd2E")L/Xxk-2 ̿ns?`bMk,k,22}pQbd+l7&FgFf-jIYO31sZWݬ1|k~z^Nog---RjBYEi.H)Dā*V蠪@U9ک6`Q; PpJ%StEE U=e) a^kOI@عK\HEAO ؼchlݖ~;P3uPgu{Pwݝ]0jmOM="ӺXaLT=a[D^u(]25)](]ۑqn쩄C=cM յ+C_R;{giWBaŐcbhSxۂ&Miݎfs1gvֆ`s$iwĸtnjev N"NSdƖl_>33滐9xbh!"\j'v`ǣN;>֎]6P;v<vt=qĮۺtҮMgj@e+BWv/NMJevZZdgXk灾bKٍ10^*G5mw+;Z=3R]` 8w"8bSPا&qI(J0x@_EXo@tpyu:b ;iu˪&ZUl輔MFG/@PѮor PT3x H9ߜg\L˜rT.KM%硢rsXNij5 vɨYJe124楜DY 蔞SGg|]r:NNYJ.tC.swg&l 8k CBNqn8:wn\nK dlKu}`y.:# 0} vw9sg̐{g ƓIr'؆F;Ma}dX}XYEC ѓЗ>qv̂,\oϳzg'"8|'9͑Ȱ4&)^ N5H܉O%[?:@c8{;;Ngy"'0>.܂5`aSCt*BF`^\np a=L9Q8p/my G8 pȭN1 yJ8Ԍ\9߿vstsMwCeqԹ$N@s+N;I8<'{ۃ=-y*R$C]Gw]Ȍq6W.\)Ser7d: L%S)d27L&ؽqtT2 BecG?cG8hqe+klϙyD؁fa]))0N]Iw(}2Pru{Kq0YQ=%J'EQuw$v&lQ!{Qp0(>"{gy+`ܮ!AT.@ v@;3*ɹ/>:T-9 !_>SLڣ~M e6ٴD.r)!'4Wr3-h\Hc|9Ӂ/PBԍn3tS^nw|HS#nySt F[ tWi\.ڎ ySAaj E0/R8֊TB-Fi5ʨe!59zf"_#MElFb>XKEA WJt'e9T?ʭc ;?ڀ ]^ cA{c0>1=:%V^uz^G}||u|W9*T¸@%QMVv`}7^S:H?AI<#ܜst)tI8? &B$R7>qezmﯩ|v ⩴*J+J*YC)UK9 TMDUeuXΆVY!1z3(0^> {H;!_qcd_U&'B=G/PW[ƟQM*4U(T8r)(lR ˀȼFErTMwj@f>']>@f! \@V H .T(VC/Ө*|$V>qe1JP_ؘO=I"o`j' A!T|CEo{{s7 w[15U|#UlK}cT7_?7Pzyi}iOiGmkjmv 5U tj^F}6bNIv;i˄jKiV;F`cT]2]V0kW5ljفLFնv{PM7'j`z.rk:5/Q#5OS8uQ/b_jߦcٯKAT?a7~Ec{81U/RW,P[<5 ̾G#guNznvbQmC~g'Dɐ{Z6O0+z؅T_ajx׾ hR176$rP&g>epR*g6%w~$ίL%L!2ʞNYʞG/m3Wk{'{iF2M͔HdpPV ;ۨJ8{s:ǩsLM*ܧS*켤0-rS6HO $spG%tTG06T]4YOÝU::a;8g5uw`9b7=!ߝڷ`6wb"p,mt"h;AgawiDWtiGלnn0Ctgs&_/0Q T~8SW@7̻@ɩ k`슐/N+ 3:#p0@tO:-ooaWj`S9 hy5>+ "$滀ÎK4IH`,in$ne*$cǭH[nd) qKP|PXG6oG9=X;谓2s0N]0B8i$d@z<ܘ+o_IQ~ZJݧ2}"@&vɤK kIw2A&t?at(p@ )[6er3P67 tQ (y7#s3SZ tn8w0}rs!dI(M&Q6 ;蝓8%*ȗK\L涀ސ1[|w_es4ukPWRMP`SqWp0YlpR^Ӳ{RsaY=$`=!gd^k2{Suo0=S>0Oޕiݫezϊ3{dAw|;sU{A{C@G;e'^ nuCi羐!}|*dnr+GO!_HtT%tS5tRmV[̛۾CǵPRt&9.';09 z`Vt]%Kd}w΀qЏaL}d}; ǀѨ(Tdl |qSw,X&3s] _+!X' X.ܙr;9,}ƕV`4=~)y_w۹햓?p ׺F n{-Jnu[@6r^rX:0%`t(cfCimTѭ(}q|:Y߃l.cӗnRD&D"D`$&Rn9M'douM^I B-%Oe97B^.a|n閐'ưi$O 0 Y[wk#n5߭,Wf1lE\FBFx虒~ruFx<^'ͻ3ѽ/n8^'݋{A\{E<g]G˯d ؽv 7TnX V7ЇBrbZ|Z|@x`< n|~w9y@Oe8>m}+ `8;$bɫrqѝ/ι3w8N1r!)[wH/y'މ"%4Х#E&(-2`H]IsDbl`Hx`d"?Q; r.7nw 췈xI$nIqbp=a!oⶻmA>ftfnES`8uc$xJO*Q9F9(7x熊WnRKuD# a`Q7Pj7~%"'DAo|=yE8W|㈏nHyJvwu{ٺ^n=˖f9ۈ 2y/[}:>ϬkkkkɵVw!CnB~8W*?w=Gz꾲{wc߷5KE{9X["V|[={7odΒƶ'2- {bw^n]rgFi%\o/W_^ ~݅޾jp}aX}>;}vg>;}vg>;}vg>;}vg>;}vg>;}vg>;}vg>;}vg>;}vg>;}vg>;}vg>;}vg>;}v}vJ P,D|+;fցe(70 KeKhgi:U"F -WCEAՑ ~N\.\nž<~[i'5iv/ca3Z̬n2 4 Ӳ zc.W1FշʫVZ5D˭ӴZBܪKA<25?.e 8(Ekl:0T *:WD@ǵO^)l0$-6]≴<֕2jX3eeRp-/%Njk^Z1C+ha< (ㅵ)hyW 'Qki?4ZZk?-&@cOb+cybd%^koFiB;1V;v`X[ΛkKix^70+ϭM&b<,-ᙴ7vНja0~g .^r+weA@QQK$iEM-%u@:Ӊ&h, PD]&PYȥ3x?^w!{qL}-̢lRZIh儥UL)t־Ÿ)tcH)v^:Z'Q^,"n@/յ:Ⱦ`;5w PP!|!ekU "0/!iEEr4|ƞ2sVquQCˆJd@nP|~rZN H倯"!hYD|-dȴЅx7€@탬Vc8VYd&_!T<-0 i[D^mȩmYK6:Y 恱Y4QF⌡8s0 A`d?)6$4mhsDTr`O ) E|jZVP #פ'%I3 K>pQ`[ oU렚PeյȜI`}0 LL)6cBH  섉`d` s޹OàAPsy?P_ ,u|tDہ` X?ЏsdĚHMBQQ1P@Oꊪr*{A3\AQYUvZ.ZV`l6Cnx223]-wQA igdYTK32UגP-UBh5мka^6^zsYS{ VBQP<3E{)h'D)|֢B&ZrJtZjʪh|1~~M!@& R!K5*]oVV=Չ'c$zBXOœy*HYGN=7YT@_ 5ӓ/x=%5t"P(<gcL3`AʃX x`;QOr@y}2,f`#tP5lË`'#I>U_d؋;z7.1Wž7 y,ZDzkiœ 4zSƐOx] 5P` p> ccL=5{/~=^,~Ϧ@+ac䶀,`:>&X+KR=yȭw~}} ^ZiQpk՝>nC#wtk<~luF{v`#XXbl>دSQTE?6Ӗ*L[ϟj[m/NG8_Bƶ`FZ[o稌c˱+6[.Tq?pSН󗰳.a'ͳ` ؋Oi"fxv=~{(^!o_XsUWУZLЎ;".DB$&_5do:^`"]WyvZ(䗴/hQ5!hxkGW~OoпyL0#9b6WLfi1C(ƉZWBz-X˵g@: ZbVY*Zyˋeh֪MNpHa9L/ BbI݅b`{GyONM*<&r(.jST 'P֖qU,.i{9m8bQlV+%/1Y:͂.I(ߩ[aE[F?,vhn N)X;#vNi h_.uVyGqx ܇^lG^׈[ᾶX7?;==#E ŜGP]pKLѮA^ 7oW,=2[bL+*_0PZ~ʯZEJ[!2vY1T`$xǀtO0ˏ%_A>҄<A{f۵`U ܤŕKEt'3ˉsO.W ͗,{dHG7i=󛼤՗ZC\k,hugM GC0G2 Gz;JKo#MX}M̭*$CVkUۯ5` F]}P-icm~yN>?.`#*wOk& cl|:MGYyE"/hw}<ޢ0}_KI#oeL N?W@K2~YЯ ;=M/]KyM{(/kwuKvFcoBuIJ?"8|X{X! Xl\"Mz=ub/WKy^`7m ,rA|<}9ؿ7tUCZUm ^߱w}}ˁ y#]3 띩BU/OzR(ރb`p6´Qf(c7j Rkt_kGwNtSC7Ap{$z͠,02=lZ)%כQ.JR%ۇ[DFE@PAݗkXYU[E0s>j鳩>3>s>`>j:`0Ta+%wP<}7X &#Nftߺcn {N9 s4pi={N9 s4pi={N9 s4p{N n&ws4xjEuq/?en .]ewlgVAڡJuQ% U蛾SSDj 0~@c=n4혨|.*k¯Co A¥OXk-;jZ=B\WKz8?}1eփU9qIIyfov`'a?2s**R\_PJuߺce_2 F)>b|Ǭx|h"Zb?ͿyQsZy ?Twl5{\M~VI޲Qogw{v;NYi*8X[g \dKlĸ1: 3⸧7#,1+#Nl&5&۪'p]w8sx7Fb3B,u֋Q!*8eN##3L{le2&?+NU\RQ "tJ:*I!+QJByFd*&Rkɩ CJf9W̐=EYS4!.̯|Cy#)q!J;<'_S<>][<|Ӫ צw.iu<7JF]>Cy9c.Ofl%~XT1emYuQula7<- 7y D>9Z&?娵7Bk{t1${_X~ֿA"K?YT~ÿ^>ƌouc}+nyӊNfGF c2~ç?m"o~f}>IܓX)2D:cHm,IE"-[AFMՄnTQ@YK`aQv6Z ih. ?Y;q1GEBcHl:E2c2x`0V$7_3.%堯JJH]9dArw,T",4|1y .+1v A0?r7yQO3Z`lt[6%[(Lu d%c4.Kd /tD,m4 eU QFE Ө$`*4Qe4Í.rS0I_Mڲ}P~?Xw ml %gCB0Xk f+&c`L4rˍIr] %`~1BNH6U`a z7ɾVxvfҘ;AŘ6Ѩ8 OB@7ƟrIË/{`0 ݁|%#̓_5U0q_srqIN1 )dpEԻdc 70nۛn6vʣ')0vX)OKqs7=;f,Fu:z`-ګ[հ[c̆~&Ƨ]>1frEЛ"sW׌GL@;6R|3=33#y̸ŌO^30mF-b^99 UeD́e3Q<$K[SH 2dFӌ{ 3cQdL ٩JynhP#YʚaS ,B9b楌fJoftf )eJIo^<|UOL&6%5]jgS3 B|X}kFfTHE L E[t@!vg;B?l;ىlv!۝&G_VDɴi=WA` {7 *1ӬM3hh4C2[_fkkf#g֧A 7HGuhYs>+ƞmf9f:4ХT4 l#dДwrETq3?7s5;c 5K52 5;a=4{AA=1 s 0=Oك.@^B;u=7`~څY" ic˻\=h'2A|/D^T%EiYs bn> .!; F03bLNVPV'ZY'3-{gf"L~w3 ng70~퇐Ot왙=7WfgƭLZ}Y!?0[#Y՗%VcԪYUX_i`] *vV*Z[UYVy+Y_խZoM2Yˊv.g-b-bZehsVdC[fwһz<?Cv]}w0z] yɰ9@?Z},&cìTl2=jedCl *d`(07zeE<ީ3 %VJ6XI!VJJÖY\e :JoVd~fu( n׽'su=S 9u{L^SC+{&Bl@ ]a.-+?ia,ߚfz )DYifXX:1M:p_旽h'.)MYo"~Fg./x-ؘgr)X+ LI<)SX<b/j&d^ ԉ 22<+s<;ij<#d:VexV", }]ü7?:loxKyo9PT*8pқ `䟽x+`b8g@nspBNePl0>BL-ܞX5Ba:YNl GA?,-DFKrŻO yW`->Yw?9l ?zzoX+ ``_ ,6 o&`:cmڀ@ /ޞވ7 \EU"hTpoyv.¼OL3 &(aXo|qi#V{#,뽎vOM[p缏Adx؛ǡ? S`$byjvA<y&v~`gfyVg'o+cdWwk+E'^}Ew^G২ȉvt0}D=<{hBh7?c$xuM+nxC׼qg l~˟/q$A܋,f GoZs{_,e[Ddw⳷x#BU=oD_ x]6̛Q]JaɄ @;K)t"%,Ұ"'ҳ@ U)X5 X-qXuU*]ȼHƊö(+옓vE4!>x ╷(. YNE쟼wo]e//O"2wD7; Cԣ{p` }쏮Oa.aDL[eEB6%r"rȂy4!IO Y'TۃնVdc࣋ȇX?Q Ɖl˦L 9fĵTH\Bp\ n ^De#6JEy?bc"l1 1CD|6Nu`1>07M>DE!|˽v촨Ί l/*tY\DWg`?CQ66}y[s` hŎaaQmtILӕp  -_fYxn& G#d9 YAU? }]ovIE`ȡ`75{)r0LqI@.1dzS&`o?0/`wHvfLB^*왨ΞǢѾ+j&50,|mc$1WWFc<̒a,2, AJ.ȪʶljZȪR,Š˂-9YfY>J XǢ` ^?W`~G!K$T^eY',eiSYYY r)+#[^ӏeX "|-Y~^ȭ22nÚŬ\Z Y'7!rr%+'yr [$G%r$[@{5t!7 `l هMCV3@`00Ql\%l\3wX{!%AeΰX:!lX:qF'T#*v]e;gMW#9՗Y=9ՕSYm9j] ȩ2daJ\eٓow(x< ETHEedTHJEh1Sv#%6!G"(AɍҔ(CF)f4FEJaT@l]QQ,#'󃥣, `)(%,>fJ7&Q`|>h{ie4㳌iqg2*erLkܐ2;߸%C_x*odY#L4~BFmx)85oDG))rM(rq`F9 |<%1)+L5>b(b)Xdx(3e:Sd*Đ|XX Kl *I K@!1^1 \9@tzb;>% ߽Eg6q̽c1sh 7(cd̥iti4FMPh;v윭A(hBhO_Ai 2'=齱龱qk/-7/[lFhl ptX b|1]bxXnMk{Q̈ޕB!0iPs#9h;a'0PMc;`鎙L0өfFeV'l̪vL6`|-X~T1q`Pm5S]c)3:kU͔@RukhakWm3uN[ļ9C xl>E/6<?ljxjk*.ubX(ub[kh߄6E : cl8l%ؘ5Ȱ2)feWSVneYy+*R/<@N̥>B~6s03D}E7T%rfJB'Y?'+)cl}_*ȜM)":V7HV\J R[U0 ԳVIU*XeT^ L`&Gs)*HRYTzf1j(Y |X7%U݊C;eœUkU%b PjXT-ԁm]̩k%E;mEŘ*Y^+z2g0{Mgr""a 2\(Vk&AdH `w vXeՑpTP @Y)cllv-_yk1-_ W[.R%5rei`w"&щhPQ)33eTo?a և`+D<a@U'>.Q֯wAA[1RIL%A*A7̿RNGϽ 0,$ϩJ< ϧ/@VT&^\eETf ;/r*r>7υv6cX737UzN$C X]kǼxQ:eT x [sCHqGY<(+ cܫ`\B_qC^־`~?Wg O=`o),ƉYQ,!uB!fUb4%1Nb2XDZ(Pq\ !/0v) ` J S,q~ox8%()x[@a)&RIJېW8Bn#6PVĐAIW11+B 6.r9e|[.E{Ae /]hG5TO4F 5Z-ua $1"ۙbKU4Cl)bi'YYNp #n.P/ObnNiX@{s "0 !SJ̦b&SFS_ z TAhWE~D/얁T>LdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQdQd '㿀лl5yj;,^zDUZo%oy0ݛZV j{]Fge!㰿d; Gc4-(d I7zPc"U1Qoc7-3%|OY &A|6Okix>[MiViSx܆׬x=&i@vQ䕌RG< [ʿC.Un^^Q y]j!)U(Ka(^)t^Z DU[y*ZI)弄B.2/>nY\ Cm/Z4rqGt4ZQh)E4#2lF?},[[k30s;dc͋ye5_`3ȸlD5FAQHgal3Ɵ,U7㱞f[`>4{?rLo7kw5{ 杼y{o3ךm۲``E[Bv:JogvJng$vnJd&ΨJtJ,S*N{vUBUn U*L7*AU*GR,$Ŷ <vj`/ Eno Rd!4S;w`?:]Ou{Pwݝ]d;{GPs'5S#{0շS=dZKUTޞ@ c lك(݋2ڿQ&Sj`:%PN z,攇*Pa:^ojj/JREĚȗ,ւ{+ F]v3j`rݎf/`4C08l#NhS[;MFNHt |ga{Rw>I"SNz'}uDC>|l{+ n/?8V˃GunxS\ K2sNp@z蜗\.3`NZLܖI+911kӱ)K%+v'vRPz')epQFT(U|ќuނ7Rt^IiϜw21㷥/Vᐌ"MRy$9e[D^*9?dGz@-PP9M)dVy&ˀr`sEV5sNY% :{e^N|iBEYع y -T\Nls;eqg +;e g~glOT+vE_8?A]4\Ŏꁼcu򺁵JN(3Y U*sF@3Un N[cGT+*?}y>.&*;O+eGg$\g /G:}iqʅ(ܙ$W;3Zg!JQyq99%'j83Ty,CʒYE $Y㥜)=/Nb}kQy;e vRTrr\,󝹰.'!{!wF`/pa0|r{Nqy,O:g</B^F:7Ag̓0=LC{ 0Y@{h}X>,kaFuaO6@/%}jdYOO-OXu!Ȱ|4/F5!Ne2SBr@T X{(C?]GtroM`aSUwA@xdQLp[ǘ/=X"87<wNmNy,;> vddsWsn-qƹ)C^sx,.98W8G;Cy-$L25 \.R&rn22L&2`PTV/!_ g!:U``ed˙5uϊ`tr7zHvJ芸Di(JhWOܒCQܽE&pMpEQؽ DR=<=½uoLK7"vS-2҃|i/…t c"鄊w<_Q煏&RDQ[rh\NK*Z(؈fZ$2=4J.1r M\ʅSv Fez Pz(B[:$yNBWPB Q)X%#KDi3=b d|k[wG2ܿ31_ j nWu=eSm(jE@]tBi48 wZ n ցu܅+QѥN{@.tj1eV )D-\@ "*BjV+QLMj|̣q05t5΢o4M0D0ޗLՋlՃb!D)TOJ .2~U #JmCz>`%|F_@;=F=z ^_S z@50uJѮSeuT vAʩ?yʪcTF$?O)<#\st E 90L]ȗj9b^ A=1C5QU 5TBv#N[0Mi\7C-UF^T]iGW5_%Qf7 N;N*eTW5CH0?rjxL4KJeP8< ۷nR -#𧱘2loi|7G?0汓+NvYʰ)ˮ]S]KQ:+dx?ao~3axðw }ߏ{*U콋*Fau̽` vp4TP` p란$;ʞZGˏ`oˇcCl~ F{ti֜S1Pͼ"TOq==c췴~Lk짴~A״~G O4FlMͶm5NI2;ZcTQ=v\׎1@`怓͞BQ e<@4gtF#)3||[ίO+ GdzNO sfD/,itg)Dg;/`> E8|lvhg-r6HGÜ4U`'vkXs 5܊|*T.ufSg.08cswPG?Ύz]4JÝ X%urv0q j Ɛe&C!gSd3iꃵĩD+r)M)A{!N㴠{N{tC/t*g,v&Qg2s6<#Du0RG"XH=nwS VX#_\VX4M'QtðtX&: lV9hS: Wp_2|fOçSKd̉E/x`,inr+lniꖀ,J-TDku17bO6}kW` rr@fN:  f/O!g)FV!~ܓp9tI(Vk}%cBqx{c0*c1C:O @'`˦4n*ণn禦nZJ`1[RYS2ܸ)ȍ6wD0'&}r{T/L vސQ#%xlV!&njTוT% T@$*zQA0Ylv_Ȣn,ޖK{ApO˼)=)=/ӻe:ޒݻ2@fw нkؾiO>;7dJO2kú!Y="+el0{_NwrX{++A u;";KcU޽*ˆ@]))r| A*T;xYFm|juTn2=g;Nt'9L;Os\wݽr{@\k&d=w.ِS0<vT_Gvz h=`x *BEFȖ@scDƚK جA56af9Ƣ=LtwΕa/íl10{[w r[Jwnm(7vO r{@[l*a+ڽ~/w-`v=+Xm'c~w`i Tl疓8>!'ddՍ Xw,DĕC@b9M{ (n]tw-ZU]w$8H!BpMXCM=9/Ƭes~s]Ur"?`ΊfFdYՕ)]EՑ@vJ倊"ȼ"KbhG42 wxBwE7K={I97x 2 @j}=u`U9X?^U˕t߫[x&TyHש 8ԷCQku8_1cc~iO͍CG5d^̛xǹdrn¾fZ'Ę9=~`ҏ]:;7`uXk6zA|vN{P'ǀ3:)Mm~c^t1m\_T|D/9O?zAa ƒP'$yd59@LE{zz'>g+ n<+V+A{x~Nk٫n '^lkw5ϛ^i/{gϽ;lm UӗG}䫣&zozۮ2/ǪߧSC-@s1F? t͎A7fsD#u^B9<}ZǪډjX~CuTzGUBr=CδW˾aYӾ!3ڱif[٨U*XH[EүTC֣JYvlLEINeL.oȇ-V9b$ʦ,"*$"|ߊX?b,o'>D+.Du~|Op3p?2CfǛ&P|S@ Լe ;(|?)~s$_!X|EoWI~oYC9;UNncr7 }EyPO?,=5_Xӽ[dzg |"k~['2e`KY[yU, ]?׊_z)f]x<:423JC#-_4^? $,V ?C3orfi>)MU~>4Qz{W:> 6N:?7xj{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ݿu"wgY,rw;ܝE"wgY,rw;ܝE"wgY,rw;ܝE"wgY,rw;ܝE"wgY,rw;ܝE"wgY,rw;ܝE"wg_qg|ρaN꿡{W8=>%Vw:ػb;B,yϋPyԛ[Fywށ2GYķC6ݔ}|>Bk|袯-?fZ?F|(~/xK3l?Ok95[}o+},[N 3r>n0\,48]Y+}]ޔU(ȁrl(7 yB? ِ|]X^ 5h:C]y]*@Yh)t ܗ f40_ v|.~"z׋foD9W_NEW}I_ ϗoŚ|5oվ֐P l M u\ D!~ǿ̟?_ԟ?ooS"|!ރMro-s9ɻ=e>¼ϚȶlȶhXJ +!;Rve S+ GztȪMϪF;**RU(MWrtɪ@-ItݪOž@.J^Eɱ`"$a-e %o |Chk݃>{SoScF3{ hݏ>>Sg{uS;{4Q+x̞L UdOr[EM)ݘr؍(7)݀5(UǼ516n`&jq ]X*յ#1*֬LAb3(`o9xX!Ŵ^oNݍə4I? Q_dP־0=rOQO;7LNO]LGjӀt`;5u%Mc{$b ?1O"; -?)7;f`BwmGtٮHm]nw#ANo3:a7Sȇv}ʵF< sm3Z0vfZfgh[h1lhFךm0-܋5QXh,n d{Z1sJ4.K3 ] ,B0T<_< 䎇ngD "8EB k.|\\y wb|O*?CNIU&JRS2N)R49+L8Y,ƕvyz٥bZAϥ `r {&:oF޲c};F>X| iү^JI[RkȊw6`k=hy`P7X VsSBQe\yV1Eف̫|Wg!<S]YeH2 ea%r P4EBW *eWY(HyT:ʋQPO`d WϤV#ia^J@ݧ0d /ˠ/e0/ QBRnʏ=VuE!>Td'VQZ̀F@}Zh>Y5uWsh]uF6M^XFy;t[w6rj,vȒjp@V;&˫: y _D%D,Nd!)ezYE~oZ%Bmf }Hk  yu8 GA?Y4\ CF _>(鎶 :.`k+!Vlt/]#dTplf=?.";O+_j\5 0 j\ʟLZ$WݟE\_TT<[\5lLCȚ+Dz&HʨWR SeYWSC)dЦ>jޅwو\̿\VB. B9OAr 暄yaᐃ ;_p2 W Ȅ|Ƚj<#j<OBF<N5_nWs.5[(O;x Ǩ-asa3x @>BN&&۟e.x=A2!-푞`j/N3<"oj'V?U!k*R>T!+V@[㟫nh뉱eT^Usq@S0ZX]5ZTITAQ'gPu݂5OU{ܬ m-[jcrj?ѻZY `7Lo=b,K∺(C]qBGqH=QnV7Dp=-jYف(і̧,Ls4:d^gL/2N-҃~ϕ CBYC>]*8!ĭXƞc-_. >*>`;E@W G&RiQ ]EKT{D-WzhU QE_|8'"QI QFNJoIacxGЧO?Et(@iBWA\wDB:҃9KOa0tީ(~xȿ^SAN/;$7F9VeXD J/VʵTn%r MKi\LS GN~F!ԟn D ynhit -An%=_ F~u*tWg0]r Q~kSq$PB*R`Ce[b}'KZ(@>k.:^t-7@?(` &HW:, .YSAk,;&u)*tw >C# 3)]5(}OןE:Ru6uTߺH hjmn3ղ}i:g$SxN98GDu{p2<+SHf]IVr+rKX-nՅlhYVcKYMp jdg+ #[Ok˴X^HuzKz;0EWt{? %op"ǰ " |B-鱪Y̪TBr,,c*a\p| xXlUUHQjkհځV 2B@+j`$j%@n  b@\[њ2b|&+k&`*9 JșNi<A#N0y٪Mu#ZyVV3x:k R[5G>` ƚ)8 ^XQaCnZCpD` ֘濁.ΎfL4˪ D\"hcM_IsI,X39Ƌ/ʞ,xZ1(Dߢcg5-]ۍ,nbqEv3KC:v !r!<`&Op,- ځm;XAD ڋ,߃w#wc]ގ| lFyta|ZA>: Y+^Qx>zId?[ҾCKȎZ`?ykk3km[\;bZoY[TV;N 2@vW.l- YPq5.c +ZU^vUhz3Ƨa53YM4V ;m7~Aaw3̎B/R,uOQw`ic_3־I4<|n }f.˚ |[3T~F 1WP@3h?M=sɾ {m [?9cvzk0xozG:A=vOo+e KZPiW7AD32<)ʡS6ҫF@, WI ΞI^DOm|3wza7:bj=FJMȯ6S1ʨTA* UUǨ:\H'UVwR)Q/zIy+7Han\XBQ[IT UȧCRʠc| zB*2 p뜥U~vAÔH:#{ݷ7]|w%tzmOP l4dK`%U_PFzr>#*QR3i=">]-l~桾@-Eqmo}~j5M@} Y4Vqwq;EXj-~ &(ٔ SZkքz\բ_TuCU*BF ~.6tEuk']UQh:8&a5oi>Hs Uuz]G3F`!ʢ_i ڵPu_b/通HGxA:Ow@{kkA*'ՌD_J,{H`6xSB~ 84]RJNTFL CKQVi] YuJuQnD%|@>@jN/ C(d:rYPN ]*0NA;ߕO%S7ڠ~-M#~,m-C 2~$#Sm:Vүdro串9HY:lʡQSP0zGcQ//$%0/Q')o0k.WQw<0)gڦ%r#2kbf+[5`]&58\{պ\? Uzfܩ?'@?`q.75`7WXXC` "@~kɠ޽mN2o_X&G`$hIY: Yȕ @Z? <ȳ:R.|kSW't[i#(7l"F/:YKtPu)zIz)iQB9"r"r'gܺem%:-<0!m('³Z?EqP_'qNWPҗC=Tx_JtjF+`p\g VwՍ: PߵtxnXZe9GIU`> O*oP~\XWJXFXO`kS8vCnF8n2|G`H+zz83z8'+1"'9߈֙*P]+ՙ r8Ѷ}~V4`p拔\Gp402L:ər?/"l 7$FAp։T*g~F(Q Ǹ}"+ތ6s#f#|_7# [I%GO(rHE$s'H|H;S♎OtR-jW#| E0QcewWJ;iORNRQ - <\y%' $6J-dz LvDXiJXgX{F@{OY ;w=ʻ^j#|캾(V{o}_lϰ'./.(m dGL{EuOei^Q玬WQExCgKP>?6Kf]W![9\k0%O͔fcyy<a0sTvex@`SX8>?.0?$P;Xkk ;n5ށ!Fq,Öm ;v;b Ke>-j mh.c jv]mV =g}gRhfԨ/]gFFQO5D'hgXbyyee!e y5k9Ol`xz ;'OW,ʲ,r,5/RB&噃rX ^E(/ŊOY^@v֓gaL;a.@;-ІaA[dx.4Vk.- hoCGSނŠ~.ʧxv;?ay{ռ' m+y'烙(f?Y LEy XZsXcΘ ?dP>)ޚmNm f$(0Ϣߙ%4sC I&j>K)T K#t@v,Daa):5X{߆twQ~Ll-gV,!ZFdbՄk$cQ]guG")ʲ^-:T`Q5 XSxBڬ-l^TCšE8ֲY], "+#ҰX2THSUX-> DC-@Aԋ RE^QSPdEz ˇ蟌IYl(<$a`l/dVaW"3ZfSEA(f K0|`tdΔyU\IJd3rJ-*,g/C^vVIJ\( }9)˳Y }=2ګ𵬬J*+ |djVPeydzd79a{W8|) .<'6-SR,!;b2{x`{X &"Ӥ͔A<0@F H/f .뱁.r`C"\;-FHgHgy= Z^ +υF?;g`y yǀ W`YҳkDw"2f= !*{M3Q!`^Yl&DZeCmm5Z`X7˽>|B헱S1;Ðy7䌼\3^IY^Lם `Z1gP4 P fQK2 Tez,-tISԉ ¼:Xى=XlɦXBtwe@`Ox!as`dJ2SVrTb(eA#_RP %l+#Ӕ( %`IJY,`oD&P8DW}MiQ&R&efc G>ұ9( Yp(*zQ_֓i0ԇ>4QS ֘ӊ@[ӧ¸F1UXo T/Ǻ] P%`:ع<+AWl-h;lp9vԞC> X8I.v;r X,fe(J4Ƹ5[GSSOv>b\'ڲmԆVQ;f6&4 [6D DmKDs~|>-&(7!`> z,Co0=Sa?TjO( ,bTCJ@ukF]5|O(ʿ6g#f#Ƭk<1k̚f=и ,hLFRHxF#/φ9rcQd5&Fn[y#hoL7M\. T0rb|f^4|y 0?Y#G7`x$do#!!FW^76zFx)15a݌ўw:x;?@[30̤6 H2;F +IN #dn5i0ޱݵq5ՌIPa``X ]/įitG (0 fC'#y1^ 2s *3X̓]Я+Og|1xfAkYho~`[uF3c6 c"&cݙc6r֏1497P^ ,~)/d,+w9ږm>lUYtԃM%V:e3<0P y=QEDFs{s΂s_cGOʸO ? Og>ˣE~]X?S)?b *08τ´˂]O&{ů2_dU'݋X&ois ?)l߳ib"~d_%F_!7VJ`2VbryŚ96Rf  8G/w ƌ307` ڒ'S&uNjʥ˳MG116 r8{QF6WE5W0؆n~bC;"Q8pi΋{nȝs [~^).l [(?eK0O`- KM`7A 쩈f3Xּ'["1. ޲+5>7K171Xf3>cW+%16Ya_ɓcs10y3Cu;˾eu1=4N3<(y XWdNb&z{zڠ+]gև.t%6t͠h6 ̤c:lLZ#) e6:Q%iHR+1z[OAPGP9#GbXHUk`I0s1131:?PWcuG[OcڇSc 5-D`25@fLl%ml#Fj2*Ǻ眺眺眺眺眺眺眺眺眺眺眺眺眺眺眺眺眺眺眺眺眺s&&Ϝ&;}\y{Mv^tYtYtYtYtYt6g C}0]S,X oܷT{K澥o*oK/*oK澥J$}K澥-U*GoTaoTa[D2߷Ta[D Ro*-U*oK-U*}K O}Kkrc9v GX#>yooQ~#*jb1iq~hA8LSf++ 7V(c6-6w 60Q*,PxL%!CWԸOE(*l׍/!ˎ{so{|qsX{-|ឆ /W<#N?yB@=epnHK4Ѻ39{q_6Xxm\Uv2PPBZth;VhVXwۦN,vƉblb%~ЄS>h!@jD0n$[@3gs{ޝZ V9?}i c<ܑ!./ƹ}oEnfs0`sA<|HǺ&%KW Ob}ȹꆸIU5k V_ӑsy~eji  rkCWl,٬M/ay`>iM7g6iʃ{pA5SlzC&}C~&eڟK%Svɡɔ]rhC})Ю< 'ٸ=ބj{Lh_}x֖%Tdn;>k5i˅uʩ~rcs{ͺA}8O|狌s&r%Q~Xj6Rl{ő~(`LaL{D`A.e0 S,H4dǯB?fc$_Ub\k>h8*zD4b1/8YF6@i}&ݠNh'IOk_N" +d} Q{"ld_7:}4ZǞ싰.׾l0D_2e}i۾s"Kmm@M>6x @|khwv&|͂I¾_<#ŷ 9lϧ[)daXE|fŷEda3< x^ ij=Z < +šJOȳ2Ƴ6 g<@΢{K6y;x?fcXg3*zx%xދx>F{Ss/[󙎦EϹd'[s,9MBŭ,>gm@NxMx@vxśś.5E]s"oOK{f0/vއtm߶>,yMk{;cy)B{=)0%3)\.9{Z_=/9_M%Rvɡ]Oٍo7!oCgvM%KCcKCORvɡŔ]얛=tojqjJT:6vҿ ={qE7.]~O;أQ|^cz(AloE)v qn92@@/t_M+b?l6141B_7Ƶ9ژl:_ֻCTM1ݝSfs#x1 jn75b؝_ڳ9mgf4hJ*xWC|{k}}! zMWUV~} Aj5B8 _c|LC9X1D]l4< csk0y440ЂrJr+ nv'=lLlYe e?u\[q܏Mק3#?cgd5k2)_((vVO@传)b(+ _N;6u?7yiuC'?ʈ/[7w,hF|:ſ?{6qɌu-g>?{@?fqc7\'UM}!ϞS5 >t^!fTܤ8S@c:=4na^q-ڊ u::tgbbfsȵc1)0ڿ<lbf[_12bS̭1gq'rgE̛w܌gnW޳cC^_|}oYl}Vc66]?C\n͇7B-VV'6{_KVU{ R3 blP`{ӓa=^܃ƶsj]L"nKgH9&-i_.ׇ^&uNy.,Ͽ B罼|oHU)9iպ6"r!g}aZmU|t~cqBTcG:wzfsr [G1EK/RZ Y˖rxW¿lj%ynQ1l>ƸO%pU?ԃ庽߰\ڪlN&~p5:Mr NڗxP<S] 4>ۗ 1KWЦU?19{8;w^#wiBq-G*>Zd!cj js)JXoOPAX*5/cm #?LZgu>Vxx;x+A0O_t1zr]T;nKg-m}lmث&DOKK:f &}b됭hP[%d_yodŴs)dϩ/%si_aЧZ Bd#(m+y0ٛ|.&{}CrE[\ZB_$_P'=w*V3Yl ОZ5i?̝_ +w~Cm}i.;aW~ؾVL9d;A_K߰R 8/Zxݛm\WyxbHM@ĆQ,ZQ$:ŠM^Re[ )DU@"mTm?TTEaEٸUHw>g.3j9vs<;w&(%* =EwE?~Q4ۋs\`(c:v F #R֦]~ D )-^шfs\ޛYm Q>sB8x;&p#`_j1!g'QaSw97/6fBh1[\^ {lf6p(Nmb>,bo|_GK5o-&h |=t:p _sFnA7]>%\/Ś^>?_5|TM/~OM/^#ǸL-Έ~9l-jm룾C^骅޽Vοs0̾f^y:r^D9OljEXQ.RMw\~0Z3Km|{29$Fsˇv/ YLm,`/ح~%_F0X^>쇰uוjk\0!~$a?SgOm`/1[]1W3w؍&mAǀq_-$>r$`^̏sHN%/T ~bªo^F3/Ge$+ kSN޼yYM^ĺ!舛5ik͋vh?8 /^O9{rdoxkd1aw|g72'S~{>^G\i?/#83[<lO8b,Ilk~q^@U֯vk7Oؘw8/ Hʇq5?헑$ܝb(M{6x+L>썛ƭUD=b(M{vA?d8:AVZ[J>Tr6^URcy3r_|Hm &Ao:_~1Xsn%>=Y_sJ>^>׿Xkz\s^>s^>!y|n$O^>߬sk5|o|}5|?R˫gqz~1{=;m=FUq؍Pڿki͝ţšca`qq7г5?U\^C?_&zuŎo{{o#8X(+/!>T)A <'%K3ݽHǑj!>.m2?_ [^?ÿAߓOW SC[ AW\]~7OЏ ~ۃn 7}gtJ{ wϳA>԰&y ܻ5A>d=ͥ-=|nϻj>(}~ u~#뽍M vk=\ʭi3x'mu,tc]'埒v3cM{mσq >tswBTƊg^Oc3U_2=%4Pegt9^?OB?Nܼ\Oߤ?Su2Zʣ)g@~ 28V>v@oN^36z]p+pЭCԯ`3jlulMFL8X\k!410o,ij-#Y?8Y6v\uo(<\qoy_卝tMR<\M:YՅ#5"m<˿sgLoM`ic5nWJ8O)uoANMU4y3So]}[Va]S@ޢZ2.stn{lИTZ[rdMGP52 =̵{ ao.K3kԋi yњZBo+?^sJ_M=SSwǨzýבw*.EԑbFC3H?y}:V6u:8.}KVG\K:z ]&oK-;=8ȏcFI>dQ?>+sac_GR.:dwuQWCԕR~ψ~!u_Qg[W9ЧduDߺ:SWwu7O?})5{R"ΎKc=0QҶ9֔vϠUx5 yѺxuq~i/Y][v^ N]l.,MgŽZ!=\ i[޼G~O ym\"5 brzk*v;+duYtژ*|};OYR7u*C;Ggmf1mX=پ>y_Wڍ/xp<@@@ NormalCJ_HaJmH sH tH ~b~ Heading 1,h1,1,a,topic/chapter$ & F<@&5CJKHaJN2N Heading 3dd@&[$\$5CJ\aJDA@D Default Paragraph FontVi@V  Table Normal :V 44 la (k@(No List ^O^ CONFNormalText$q`qa$CJ_HaJmH sH tH LL Bullets$ & Fxa$5aJmH sH NN ENRP Normal$dhxx1$a$aJ^"^ MERGA_NormalText$q`qa$CJ_HmH sH tH :": Caption CJ\^B^ CONFTableTitle2$$$a$6_HmH sH tH >R> PhD Normaldxxlrl PhD Chapter Heading Line 2$ & F@& a$5CJ$frf PhD Chapter heading line 3$dNdd ENRP Heading 3$$$ & F<a$5aJmH sH \\ ENRP Heading 2$$$x<a$CJaJmH sH jbj PhD Chapter Heading & F Q^`Q CJ$KH\\"\ MERGA_Quote $qqxx]q^qa$ CJmH sH FOF CONFSmallText `CJaJROR CONFAbstract $$hh]^VOV CONFTitle$$$a$CJ _HaJ mH sH tH >O> CONFAuthor1CJaJDOD CONFAuthor2 6CJ]aJ>O> CONFAuthor3!CJaJ:: CONFBullets " & F JJ CONFFigure#$$h`a$HOH CONFFigureTitle$$$ha$HOARH CONFFigureIdentifier%68b8 CONFFootnote&<DOD CONFHeading1 'xCJaJROR CONFHeading1 CharCJ_HaJmH sH tH POP CONFHeading2)$xa$6CJ]aJLL CONFTitle CharCJ _HaJ mH sH tH HH CONFHeading2 Char6CJ]aJ<< CONFHeading3,x6VV CONFNormalText CharCJ_HaJmH sH tH >> CONFHeading3 Char6O CONFNumbersv/ & F>Tq.Tf^`FF CONFQuote0qqxx]q^qJOJ CONFReference1$e^e`>!> CONFSubscript CJEHaJB1B CONFSuperscript CJEHaJ>> CONFTableFoot 4<TT CONFTableIdentifier5$$x`LL CONFTableText6$<`a$CJPbP CONFTableTitle7$$x`6]6U6 Hyperlink >*B*phB^B Normal (Web)9dd[$\$*W* Strong5\.. link-to-top!Mbm{) U ? _Vn3T"#'m*o**-.014!56c8;";><B=k>?@ABQCCDNEEFwGHI K{KLL#M00 0!00'00)0000 /0 /0 /0 /0 /0 00000'000)0000%0000000%0000$00'0000'0101010101010101010101010101010101010101010L!U+0#J!U,./!U-?2$nN{*g.b"$epnHK4Ѻ3&"$*9U !4@,(  J  # A"?J   A#" ?P   A3"`?B S  ?m*.!M!z"4_>!YTPx&T@{o]1>??@@@AABBBBBBCCCDDFFFFwGwGHHH+IIIIJJKKLLLMM#M     # !"$%&'()*+,-./1023456789:;<=>?1@@LLdd<)<)<9>9>??@@@AABBBBBBCCCDDFFFF~G~GHHH1IIIIJJKKLLLMM#M !"# $%&'()*+,-./1023456789:;<=>?_8*urn:schemas-microsoft-com:office:smarttagscountry-regionhttp://www.5iantlavalamp.com/h+*urn:schemas-microsoft-com:office:smarttagsCity0http://www.5iamas-microsoft-com:office:smarttags92*urn:schemas-microsoft-com:office:smarttagsStateZ?*urn:schemas-microsoft-com:office:smarttags PlaceTypehttp://www.5iantlavalamp.com/Z>*urn:schemas-microsoft-com:office:smarttags PlaceNamehttp://www.5iantlavalamp.com/V@*urn:schemas-microsoft-com:office:smarttagsplacehttp://www.5iantlavalamp.com/ t@?>@>>?@8@8@8@2@2@22@+@+@+@@+@++@>>>?+@8@2@+@+@+@+2+@@+@+@2@2@@+;;><C<==>>>>>>>?? ?3@8@H@S@BBADGD5H<<< = =3===k>>>>> ?\@d@@AAAAAABBBBBBBQCCD7DDDDDD$E%EFEGEMEEEgFFFFFUGwGGHHHI:IBIIJJJ K)K*K\K]KzK{KKKKLALLL#M33333333333333333333333333333333333333333333333333#M |U|rrΕel+M Mk01;G@k4Fķ"^7F4Ox,*Uhc"̚ddv.Y}BX*W°\                 j{2V"[N0V+?f(\        vD MhJmH*Le$̺L2*0VZY         {         i%z#M@#*!M@UnknownGz Times New Roman5Symbol3& z Arial?5 z Courier New;WingdingsSTimesTimes New Roman"qhff A' A'nn24dLL2qHX(? i2pThe Problems and Challenges of Catering for the Range of Mathematics Abilities in Australian Primary Classrooms ANN GERVASONIDR.OPOLOT OKURUT@         Oh+'0 8DP` |   tThe Problems and Challenges of Catering for the Range of Mathematics Abilities in Australian Primary Classrooms ANN GERVASONINormalDR.OPOLOT OKURUT2Microsoft Office Word@@=]@=] A՜.+,0X hp|  9'L qThe Problems and Challenges of Catering for the Range of Mathematics Abilities in Australian Primary Classrooms Title  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Root Entry F]Data 1TablewSWordDocument*DSummaryInformation(DocumentSummaryInformation8CompObjq  FMicrosoft Office Word Document MSWordDocWord.Document.89q