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The purpose of this research is to clarify the potentials of spatial geometry 
curriculum development in lower secondary schools through utilizing 
three-dimensional dynamic geometry software. By applying the impact of this 
software which is epistemological, five potentials are identified as followed: 
empowering the learning activities in spatial geometry, empowering activities 
wherein space figures are logically explored, expanding the learning content 
of spatial geometry, strengthening the connection of content in different units, 
strengthening the relationships between mathematics and real world. 

 
1. The necessity for developing spatial geometry curriculum with 3DDGS 

The space surrounding us has three dimensions, namely, “length,” “width” 
and "height”, for example. We live in this three-dimensional world. So, with 
mathematical “glasses” of spatial geometry, we can obtain a deeper understand-
ing of the mechanism and scheme of the three-dimensional world, improve the 
quality of our daily lives, and perceive four or higher dimensional worlds which 
we cannot see in nature (Banchoff, 1990). By using three-dimensional figures in 
those ways, therefore, our activities as humans can be further enriched. 

It is necessary for learners to appreciate the value and merit of learning spatial 
geometry as well as merely to learn properties and relationships in spatial geo-
metry. To respond to that it is necessary for us to reflect a new approach to spa-
tial geometry curriculum not only from aims and contents but also from a learn-
ing environment. Because developing curriculum based on an educationally ef-
fective ICT environment will support dealing with contents that was difficult to 
learn/teach in conventional environments, eliminating limitations of learn-
ing/teaching, and creating various potentials in their aims and assessments. 

Regarding ICT environments in geometry, Dynamic Geometry Software (he-
reafter referred to as DGS) being arrived in the 1980s, have created new poten-
tials of construction and operation of plane figures, and have enriched learn-
ing/teaching of plane geometry at the mandatory educational stages. In recent 
years, researches relevant to DGS have begun to focus on how DGS can help 
mediate explanations, verifications and the nature of proofs (Hoyles & Noss, 
2003). Based on changes in learning environment and a trend in research, 
long-term curriculum development projects such as the Compu Math Project 



(Hershkowitz et al., 2002) have been conducted at the lower secondary school 
level, and fruitful results achieved. However, conventional DGS has been main-
ly developed and used in the learning/teaching of plane geometry, so this DGS 
has had little influence on curriculum development in spatial geometry. 

In response to this, three-Dimensional Dynamic Geometry Software (hereaf-
ter referred to as 3DDGS) appeared in 2004. When we use 3DDGS, similar to 
conventional DGS for plane geometry, we can construct spatial figures, opera-
tionally and manipulate space figures while maintaining their properties and re-
lationships in a three-dimensional world. Moreover, we can observe simulta-
neously the movement of figures not only from various perspectives but also on 
different screens. If learners can use 3DDGS, it will facilitate to improve their 
learning of conventional contents. In addition, it enables developing new con-
tents which was difficult to learn until now. Moreover, it can be expected that 
more active learning and teaching will be enhanced. Furthermore, the corres-
pondence between space figures and our surroundings can be strengthened by 
using 3DDGS, therefore it will presumably foster “Mathematical literacy.” 

 
2. Purpose and methods 

The purpose of the research is to answer the following questions. 
Through applying the epistemological impact of 3DDGS, what kind of po-
tentials would be created in the curriculum development of spatial geometry 
in lower secondary schools? 
 

3. The epistemological impact of 3DDGS 
ICT in mathematical education such as DGS is a “window” at the boundary of 

the metaphysical world known as mathematics and the physical world in which 
we live. It is also a "stick" with which we can construct and manipulate mathe-
matical objects and relationships for any purpose. Thus, researches relevant to 
ICT in mathematical education have developed in immanent realism (Resnik, 
1992), so we in the physical world can contact, through ICT, mathematical ob-
jects and relationships in the metaphysical world. 

In particular, ICT in mathematics education has an impact on refining how we 
recognize mathematical objects. Moreover, the new realism that substantializes 
mathematical objects and relationships has challenged potentially conventional 
premises of learning/teaching and has entailed deep changes in curriculum and 
learning/teaching (Balacheff & Kaput, 1996). 

For example, ICT gives us substantiations for mathematical objects and rela-
tionships, and then helps us to manipulate and observe them. Therefore ICT 
promotes our conjectures and reasoning regarding how mathematical objects 
will behave in response to the various approaches taken. Thus we obtain a dee-
per understanding of mathematical objects and decrease the “distance” between 
mathematical objects and us. And as a result, we actually realize familiarity with 
a mathematical object as "something of our very own". We can also change the 
connection between people as the subject and a mathematical object as an object 



into something more fruitful. In this sense, it is worthy of mention that the im-
pact of ICT in mathematics education is epistemological (Piaget, 1947). 

In case of 3DDGS, the objects are constructed with spatial figures, so they 
correspond to the real world more compared to 2DDGS. Thus, with 3DDGS, it 
is easier for us to vertically examine spatial figures in mathematics and horizon-
tally examine them in mathematics (Treffers, 1986). These examinations will 
encourage a disposition that do not merely replicate the real world with spatial 
figures but also attempt to get a grip of the real world. 

This disposition also has epistemological meaning in the relationship between 
geometry and the real world. And that is because, in this disposition, it is possi-
ble to see the “Copernican Revolution” (Kondo, 1994) that occurred in the his-
tory of geometry philosophy, particularly while non-Euclidean geometry was 
being established, where a passive perspective in the sense that a single absolute 
space is “transcribed” into geometry was changed into an active perspective in 
the sense that geometry give the space a structure. 

 
4. Epistemological impact on curriculum development using 3DDGS 
4.1 Empowering the learning activities in spatial geometry 

Applying the epistemological impact of 3DDGS enables constructing objects 
based on the properties and relations of the figures used. It also enables observ-
ing the process of constructing objects and then observing them as the result of 
construction. Subsequently, the epistemological impact of 3DDGS can open up 
more potentials of empowering the learning activities in spatial geometry. 

For example, in the Japanese government educational curriculum guideline 
(revised in 1998), seventh grade learning content includes activities that aim at 
understanding that space figures such as cones and cylinders can be constructed 
by rotating a plane figure. In class teachers are likely to demonstrate construct-
ing a space figure with teaching tools whereby a planar board is rotated around 
an axis. However, for students who do not realize that a space figure will be 
constructed through that rotation of a plane figure, it is rather difficult for them 
to visualize the space figure from the "afterimage" of that figure. Contrasting 
that, with 3DDGS, rotating a plane around an axis and tracing the perimeter is 
enabled (Figure 1). Moreover, when the plane is modified and then rotated, var-
ious solids of revolution can be constructed. 

 
Fig. 1 Rotating a triangle and tracing the perimeter 



4.2 Empowering activities wherein space figures are logically explored 
Applying the epistemological impact of 3DDGS enables observing the con-

struction and manipulation of space figures with dynamic transformations in 
multifaceted ways. It is considered that the above can improve both elaborate-
ness and precision of observation, deepen relational understanding of objects in 
three-dimension, and amplify the quality of verification and discovery. Moreo-
ver, through reverse transformations whose attributes are maintained, the prop-
erties, relationships, dependence and independence of the elements that make up 
the objects become evident. This then further empowers activities wherein the 
properties of space figures can be logically explored based on the properties and 
relationships of plane geometry. 

For example, in the process of exploring various cut surfaces of space figures, 
students discover that the cut surface sometimes becomes an equilateral triangle, 
a square (regular quadrilateral) or a regular hexagon. And at this point they can 
discuss exactly why the cut surface became, for example, an equilateral triangle, 
after a student has cut a cube with a kitchen knife in 3DDGS, they can then ob-
serve by moving the kitchen knife forwards and backwards within the cube that 
the cut is diagonal to the bottom surface when you start cutting the cube (Figure 
2, left). We can also observe in the middle of cutting that the cut is diagonal to 
the side surface (Figure 2, right). Through these observations it can be consi-
dered that students would find it easier to explain, based on the fact that the in-
dividual surfaces of the cube are congruent, that “the surface cut is an equilateral 
triangle because the diagonals of the congruent squares are of equal length and 
because the triangle consists of line segments of equal length." 

Fig. 2 Cutting a cube with a “kitchen knife” 
The students continue exploring whether the surface cut will become a regular 

pentagon. When the sides or angles of surface cut are measured with the mea-
surement function of 3DDGS, it is then possible to observe that the surface cut 
is not a right pentagon even though it sometimes appeared to be one on the 
3DDGS screen. Moreover, when the kitchen knife is moved forwards and 
backwards within the cube, students can focus on the positional relationships of 
the surfaces cut. And in this way they can observe that at least one set of the 
sides of the cut surface pentagon are parallel because the corresponding surfaces 
of the cube are too. However, a right pentagon does not have a parallel set of 
sides, so the cube's cut surface cannot be a right pentagon. This exploratory ac-
tivity becomes the basis for the learning of indirect proof because students have 



a chance to explain the contraposition of the proposition: "when a polygon is a 
right pentagon, there is no parallel set of sides." 
4.3 Expanding the content of spatial geometry curriculum 

Applying the epistemological impact of 3DDGS it is possible to construct ob-
jects based on the properties and relationships of the figures used, and it even 
enables the construction of objects whose physical construction and manipula-
tion are considered rather difficult. It is also possible to transform the con-
structed object while maintaining its attributes and then observing the transfor-
mation in multifaceted ways. And as a result of this, we can open up the poten-
tial that the contents whose learning has been conventionally difficult can be in-
cluded in spatial geometry curriculum. 

For example, as described above, the Japanese 
government educational curriculum guideline (re-
vised in 1998) includes solids of revolution at se-
venth grade level. In this level students are in-
tended to re-learn space figures (such as cones and 
cylinders), which had already been learned at ele-
mentary schools, as the figures constructed through 
rotation. Hence the guideline does not actually in-
clude constructing any new space figures. 3DDGS 
makes it possible to set the axis of revolution either 
inside or outside a plane figure and then to tilt that axis freely because there are 
no physical restraints or limits. This then enables the construction of a torus by 
setting the axis of revolution outside the circle, for example (Figure 3).  

Moreover, applying the epistemological impact of 3DDGS deepens relational 
understanding. Hence it is possible to generalize already-leaned figures’ proper-
ties and relationships from the two-dimensional world and establish them 
three-dimensionally. And conversely it is possible to specify properties and rela-
tions in the three-dimensional world and then establish them two-dimensionally, 
which then enables elaborating learning contents beyond dimensions. 

For example, with the Midpoint Theorem, we can prove that a quadrilateral 
created by connecting the midpoints of each side becomes a parallelogram (Fig-
ure 4, left). This proof does not use the fact that the four apexes of the quadrila-
teral are on the same plane. It makes it possible to predict that, even when four 
apexes are not on the same plane, a quadrilateral created by similarly sequen-
tially connecting the midpoints will be a parallelogram. In fact, using 3DDGS, 
when one of the four apexes is redefined as a point three-dimensionally and then 
moved somewhere not on the same plane as the other three apexes, it is possible 
to confirm that the quadrilateral created by sequentially connecting the mid-
points remains a parallelogram due to the fact that the two sets of the opposite 
sides are of equal length. 

Fig. 3 Torus construction



 
Two dimensional case Three dimensional case 

Fig. 4 Quadrilaterals created by connecting midpoints 
4.4 Strengthening the connection of content in different units 

Applying the epistemological impact of 3DDGS enables connecting content of 
a unit with content of other units. This results in the integration of contents 
among different areas of school mathematics and in the advanced learning. 

For example, the Japanese government educational curriculum guideline (re-
vised in 1998) includes “circles” in the content of geometry at fourth grade level. 
At seventh grade level the content includes inverse propositions and their graphs 
and deals with the term, “hyperbolas.” Moreover, at eighth grade level the con-
tent includes quadratic functions and their graphs and deals with the term, “pa-
rabolas.” However, circles, hyperbolas and parabolas are not integrated as inter-
sections constructed by cutting the surfaces of cones. 

In contrast, 3DDGS enables the construction of cut surfaces in shapes that in-
clude circles, hyperbolas, parabolas and ellipses by working out ways to cut 
cones with a plane. In particular, hyperbolas are formed when cones are cut with 
a plane parallel to the axis of revolution. If the space is dragged in 3DDGS so as 
to make the generating line the coordinate axis, it is possible to observe a 
hyperbola on the rectangular coordinate. It also clarifies that the generating line 
of cone is an asymptote (Figure 5). This learning will support conducting ad-
vanced exploration to construct parabola-shaped cut surfaces when the term, 
"parabola," can be used to name a quadratic function graph in the eighth-grade. 

 
Fig. 5 Integrating inverse proportion graphs with cone-cutting 



4.5 Strengthening the relationships between mathematics and real world 
Applying the epistemological impact of 3DDGS enables mathematically mod-

eling things around us and their behavior. This modeling process can clarify 
mathematical structure and mechanism embedded in things and their behavior, 
and can strengthen the correspondence between real world and mathematics. 

For example, as a general rule butterflies symmetrically flap their wings using 
their bodies as the axis. 3DDGS models this movement as follows. First, straight 
line l is constructed on plane p, and circle O vertical to the plane is constructed 
centering around a point on the straight line. Next, a small arc is constructed on 
the circumference. This arc is the range within which the wings move. Next, 
point A is constructed on the arc, and the shape of a butterfly wing constructed 
with a polygon on plane q on which point A and straight line l are located. Fi-
nally, surface r vertical to plane p and passing through straight line l is con-
structed, and the other wing constructed by moving the wing (polygon) from 
plane q to plane r in a planar-symmetrical fashion. In fact, when point A on the 
arc is moved with the animation function, a butterfly starts flapping its wings 
(Figure 6). However, when they are flapping both wings sometimes overlap each 
other. This happens because the arc on circle O intersects symmetrical plane r. 
Hence upon correcting this both wings flap like a butterfly. 

Fig. 6 Mathematical mechanism of a wing flapping 
 
5. CONCLUDING REMARKS 

Conclusion of this research is as follows. 
By applying the epistemological impact of 3DDGS, the following potentials 
can be opened up in the curriculum development of spatial geometry in low-
er school mathematics. 

 Empowering the learning activities in spatial geometry 
 Empowering activities wherein space figures are logically explored 
 Expanding the learning content of spatial geometry 
 Strengthening the connection of content in different units 
 Strengthening the relationships between mathematics and real world 

Based on the above-mentioned potentials, a pilot spatial geometry curriculum 
for the seventh grade (14 hours in total) was developed and implemented. The 
achievement situation of students was then examined by using the problems and 
questionnaire of National Survey of Implementation and Achievement of Japa-



nese government educational curriculum guideline. The results showed remark-
able improvements in their understanding of space figures and their explanation 
about the geometrical properties in space (Chino et al., 2007). 

The following are issues for further research: 
 Is it possible to concretize the potentials of the epistemological impact of 

3DDGS with spatial geometry curriculum development? 
 Is the intended curriculum sufficiently meaningful for implementation 

when compared to the conventional curriculum? 
 How will students' understanding of space figures change with the imple-

mented curriculum? 
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